
On the diffusion coefficient of a polymer chain in theta solvents

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 453

(http://iopscience.iop.org/0305-4470/21/2/025)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen .  21 (1988) 453-471. Printed in the U K  

On the diffusion coefficient of a polymer chain in theta solvents 

S Stepanow and G Helmis 
Technische Hochschule 'Carl Schorlemmer'  Leuna-Merseburg, Sektion Physik, DDR-4200 
Merseburg, German Democratic Republic 

Receiked 15 September 1986, in final form 23 Ju ly  1987 

Abstract. The  path integral formulation of polymer dynamics is used to derive the perturba- 
tion expansion of the diffusion coefficient of a polymer chain in theta solvents in powers 
of the hydrodynamic interaction. The perturbation expansion of the diffusion coefficient 
has  been renormalised to  second order of the  hydrodynamic interaction. The  ratio of the 
hydrodynamic radius to the gyration radius is given to second order  in E = 4 -  d,  where d 
is the space dimension. 

1. Introduction 

The diffusion coefficient of a polymer chain in theta solvents has been investigated 
both theoretically and experimentally. The classical investigations by Kirkwood and  
Riseman (1948), Kirkwood (1954) and Zimm (1956) (see also Yamakawa 1971) provide 
the basis for understanding the dynamical behaviour of the dilute polymer solutions. 
However, the methods of Kirkwood and Zimm use the pre-averaging of the hydro- 
dynamic interaction ( H I ) .  In this connection, the natural question about the effects of 
the fluctuating H I  arises. The interest in the effects of the fluctuating H I  has increased 
after the finding of Schmidt and Burchard (1981) that the prediction of the Kirkwood 
theory for the ratio of the gyration radius to the hydrodynamic radius is at variance 
with experiment. At present the Monte Carlo simulations by Zimm (1980), Fixman 
(1981, 1983) and  Freire et a1 (1986) studying the effects of the fluctuating H I  on the 
diffusion coefficient are available. 

So far, these effects have not been theoretically investigated in a satisfactory way. 
The first theoretical study of the effects of the fluctuating H I  was carried out by Oono 
and  Kohmoto (1983). Their approach is based on the treatment of the Kirkwood 
diffusion equation using the Kirkwood-Riseman formalism. Carrying out the iterative 
solution of the Kirkwood-Riseman scheme, Oono and Kohmoto obtained the perturba- 
tion expansion of the friction coefficient of the polymer chain in powers of the 
fluctuating H I .  Since the critical dimension of this expansion is four, Oono and  
Kohmoto applied the renormalisation group to analyse the perturbation expansion in 
the vicinity of four dimensions. However, as a matter of fact, the E result for the 
diffusion coefficient in theta solvents obtained by Oono and  Kohmoto does not go 
beyond the Kirkwood result. The extension of the calculations of Oono and Kohmoto 
up  to second order in powers of the hydrodynamic interaction was recently carried 
out by Wang et a1 (1986). 

However, the Kirkwood-Riseman formalism is an approximate treatment of the 
Kirkwood diffusion equation. The rigorous description has to be formulated using the 
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Green-Kubo formalism or, equivalently, has to start with the Einstein formula for the 
diffusion coefficient. The last formulations lead to expressions of the diffusion 
coefficient ( D )  as a time correlation function (Fixman 1981, Ackcasu 1982). The 
calculation of the diffusion coefficient starting from the expression of D as a time 
correlation function was done by Stepanow (1984), Oono (1985) and quite recently 
by Wang and Freed (1986). 

In the present paper we give the theory of the translational diffusion coefficient of 
a polymer chain in theta solvents on the basis of the path integral formulation of 
polymer dynamics ( Stepanow 1984), which is assumed to be governed by the Kirkwood 
diffusion equation. The idea of the path integral formulation consists of the following. 
The Kirkwood diffusion equation is a Fokker-Planck equation, which is the differential 
equation for Markovian processes. The transition probability for these processes is, 
indeed, a path integral. The application of path integrals to the stochastic processes 
has been the subject of numerous articles in recent years. 

We use the method of Langouche er a1 (1979) which closely follows the path 
integral formulation of the quantum field theory. Recently this method was used by 
Elderfield (1985) for kinetic growth models. The connection to the field theory origi- 
nates from the formal analogy between the Schrodinger equation and  the Fokker- 
Planck equation. 

The path integral formulation of the Kirkwood diffusion equation is an efficient 
tool for deriving the perturbation expansion of the dynamical quantities of dilute 
polymer solutions. The starting point for the calculation of the translational diffusion 
coefficient is the well known Einstein formula. A different but equivalent way is the 
expression for the mobility of the polymer chain which is obtained using the linear 
response theory (Fixman 1981). The path integral method enables one to interpret in 
a rigorous manner the Einstein formula for D in terms of the perturbation expansion. 
To our knowledge this is done in the present paper for the first time. Here we extend 
the work of Stepanow (1984) to give a general representation of the perturbation 
expansion of the diffusion coefficient in powers of the H I  by means of diagrams. To 
achieve this we follow the standard method of obtaining perturbation series in the 
quantum field theory (for example, see Huang 1982). The representation of the whole 
perturbation expansion of D by means of diagrams is an  advantage by which our 
method differs from that of Oono (1985) and Wang and Freed (1986). Furthermore, 
working with the generating functional, which plays a central role in the path integral 
method, enables one to consider the inelastic scattering function, the translational 
diffusion coefficient and the intrinsic viscosity in a unified way. The practical aim of 
this paper is the computation of the diffusion coefficient of a polymer chain in theta 
solvents up  to second order in powers of the H I  and renormalisation of D to E’. 

The paper is organised as follows. Section 2 introduces the derivation of the 
perturbation expansion of D. Section 3 gives the solution of the Zimm model with 
pre-averaging H I  in d dimensions. Section 4 introduces the calculation of the two-loop 
contribution of the fluctuating H I  to D. Section 5 introduces the renormalisation group 
analysis of the diffusion coefficient. Section 6 contains the discussion. 

2. Perturbation expansion 

As a model we use the continuous model of the polymer chain by Edwards. Instead 
of the configuration of the chain r( s) it is advisable to introduce its Fourier transform 
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& defined as follows: 

where L is the contour length of the chain. The Kirkwood diffusion equation for the 
transition probability density P ( &  t ;  to, t O ) ( g =  go, S I , .  . .) can be written in the form 
of a Schrodinger equation (Stepanow 1984) 

iaP(t ,  t " ) / d t  = ~ ( j ? ,  i j ) P ( t ,  t o ) .  

H ( j ? ,  0 = Ho(p ,̂ & I +  H!"t(p ,̂ g) 

(1) 

The Hamilton operator 

is given by 

where 

Ai,,= ( d / l ) ( r k / L ) '  D" = kn/ 5 0  p^h = -iVh 
(4) 

T f n " =  kTt7-l [, loL d s ~  1' dS2 Q h l i T " ( q ) Q C 2 n  exP(iqSm(Q,,m -Or2,)) 

5 ,  = 5 ddq / (2n )d ,  7 is the solvent viscosity, k is the Boltzmann constant, T is the 
temperature and io is the monomer friction coefficient. The Fourier transform of the 
Oseen tensor T g " ( 4 )  is given by 

T P L ( q )  = q-2(6@' - 4 5 7 z / 4 2 ) .  

In (2)-(4) the Einstein sum convention is used. The excluded volume interaction is 
omitted in ( 2 )  and (3). 

The path integral formulation of the Kirkwood diffusion equation is based on the 
following representation of the transition probability density for the infinitesimal time 
A t  1 

P ( &  [ " + A t ;  to, t " ) =  exp(ip(&-(")-iArh(p,go)) ( 5 )  i: 
where p t  is the abbreviation for pk& and 5, means the integration over pol p l ,  . . . . 
h (  p ,  6) is the classical Hamiltonian associated with the Hamilton operator H (  j?, 6). 
For the finite time interval, we partition the time axis f o  < t ,  <.  . . < t ,  = t and get 

P ( S ,  1; So, t o )  = I d d L I  . . . [ d d S , R S ,  f ;  ~ ~ 1 . .  . P(S,, t l ;  So, t o ) .  ( 6 )  

Using (5) and (6) and taking the limit A t  = t ,  - 1,-, + O  we arrive at the path integral 
representation of the transition probability density (Stepanow 1984) 
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Following Langouche er a1 (1979), instead of P ( t ,  I ” )  we consider the generating 
functional Z(  j ,  j * )  which is defined as follows: 

Z ( j , j * ) = [  Dp  1 DP,xp(iS(T, t o ) + i  It: df ’&( t ’ ) jk ( t ’ )  

The ‘action’ S( T, 1”) is the integral in the exponent of ( 7 ) .  T is an  arbitrary time which 
must be large enough. The functional differentiation of 2 with respect to the external 
sources j and j *  enables one to obtain different correlation functions. For example, 
the correlation function 

can be expressed as a functional derivative of the generating functional as follows: 

(5:( t 2 ) t k (  t ,  )) = i-’S’Z( j ,  j *  = O ) / S j t (  tz)Sjk(  t l ) l j = o  

The time correlation function 

( 5 t (  fd e x p ( i w 5 (  f d ) 5 X  exp(iq15,( t l ) )  

is expressed by Z as follows: 

(. . .) =i -2~zZ( j , j *  = O ) / ~ J ~ ( f ~ ) S J ~ ( f , ) l j , , l ~ i = ~ ~ * , , ~ ~ ( ~ - ~ ~ ~ + ~ , ~ , , ~ ~ ( ~ - ~ , i .  

The generating functional Zo( j ,  j * )  associated with the Hamiltonian H o  (Rouse model) 
which was obtained by Stepanow (1984) is 

Z ” ( j , j * ) = e x p  -1 -  + i - + (9’) ( 
where the black circle is associated with the source j h ( t ) ,  the cross with the source 
j;(t), the square with g:, the full line (propagator) with - D , k I ( t ’ - t ’ ’ )  and the wavy 
line with -A[>iAlkl(  f ’ ,  f ” ) .  The time integrations are associated with the ends of lines. 
The symmetry numbers of the diagrams in (9’) have to be taken into account. The 
symmetry number of the first two diagrams is one, whereas that of the third diagram 
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is two. The generating functional for a polymer chain with hydrodynamic interaction 
obtained by Stepanow (1984) can be represented graphically as follows: 

t 

where the arrows and the black circle in the first exponent are associated with 
- i 6 / 6 j ; ( r )  and 6 / 6 j k ( r ) ,  respectively. They act on the cross and the black circles in 
the second exponent respectively. The loops in (10) are respectively associated with 
-i T,,A,,, and i T,,, where T,, is given by (4) without the exponent. The second diagram 
in the first exponent of (10) has the symmetry number one. The time integration i s,’dT 
is associated with each loop. To facilitate ‘reading’ the diagrams we will give below 
analytical expressions associated with some diagrams. Two diagrams in the first 
exponent of (10) are associated, respectively, with the following expressions: 

i loT d r  i - l (  6 /  6 j t ”  (7 ) ) (  - i )  Tf:A, ,, ,( 6 /  6jE (7) )  

i 5,’ d r i - ( 6 / Sj;” ( r ) ) i  Tf; i- ’ ( 6 / 6jt ”( 7)  ). 

The action of the first exponent in (10) on Zo( j ,  j * )  produces the perturbation expansion 
of Z ( j ,  j * )  in powers of the H I  which can be represented by means of diagrams. The 
result of the action of the second loop of (10) on Zo( j ,  j * )  is 

z ( j , j * )  = exp( 0) 

Xexp-I- f I- t + -). ( 
As an example we give the analytical expression associated with the third diagra:.. I in 
the second exponent of (11): 

The action of the loop in the first exponent of (11) on the first three diagrams in the 
second exponent changes the propagator D i k l ( t )  as follows: 

- * -  + i- -+... = -c- . (12)  

We note that the loop with two outgoing lines is associated with iT,,,, whereas the 
loop with an outgoing and an incoming line is associated with -iTknA(n)r where A,,,, 
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belongs to the incoming line. Equation (12) defines the effective propagator 9z,'L(t). 
It is easy to check that 9:,:( t ' -  1 " )  satisfies the following equation: 

.- - +e (13) 

which has the following analytical representation: 

9 f,: ( t ,  - 2 , )  = 6'""6k,D, ,, ( t 2  - t I )  - i ( 14) 

The result of the action of the operators in the first exponent of (1 1) on the last diagram 
in the second exponent is 

d 'T D, ,, ,( 'T - t l  ) ( - i )  A ,, T:: 9F.k ( t 2  - 7) .  I,: 
m+- +-+- (15) 

Taking into account (12) and (15) we obtain for Z( j ,  j *  = 0) 

+ t + + 

(16) 
As an example we give the analytical expression associated with the third diagram in 
(16): 

loT d t ' i  loT dT loT d t " j z ( f ' ) 9 ~ ~ ( t f ,  T ) ( - i ) T ~ ~ A i ~ , A ~ ~ l A ~ ~ , ( ~ ,  t " ) j k ( t " ) .  

The symbol - in (16) means that the sources j k ( t )  have to be modified step by step 
in the perturbation expansion as follows (Stepanow 1984): 

( a )  first order 

j k  ( t 1 + j k  ( t 1 + 41 ( Qks,  - QksZ)  6 ( t - 7 1  ) 

j k  ( t 1 -+ j k  ( t 1 + q1 ( Qks, - QksJ 6 ( t - 7 , )  + q2( QkS3 - QhJ 6 ( t - 

( b )  second order 

(17) 
and so on. q, ,  s2,-,, s2,  and T ,  are the variables associated with the ith loop. Representing 
the wavy line in (16) in the graphic form 

---"-=A++++ 

instead of (16) we arrive at 

Z ( j ) = e x p  - I- + - + tcec-. t e)-. (18) ( n : O  

The third diagram in the exponent of (18) is associated with the following expression: 

f I o T d t '  I o T d ? ~ f j z ~ t ~ ) ~ f ~ ( t ~ , O ) A ~ ~ l ~ ~ ~ " ( ~ f ~ , O ~ j ~ ( t ~ f ) .  

Performing the average over the 6; ( k  = 1 , .  . .) according to the formula 

we get 





460 S Stepanow and G Helmis 

where N = L / l  and the broken line in (23) is associated with the following expression: 
A ;,,')( D, )( t '  - t" )  + D, ,( t" - t ' ) ) ,  The remaining diagrams in (23) are associated with 
the following expression: 

x (lo' d t '  lo' dTD,O) (  t - T) TgT9;:( t ' ,  ~ ) j : (  t ' )  . ) 
Up to second order of the hydrodynamic interaction (23) yields 

3. Diffusion coefficient in the pre-averaging approximation 

Now we shall evaluate the diffusion coefficient by using the pre-averaging approxima- 
tion. The exponent in (4) is the cause for the modification of the sources in the 
perturbation expansion. The pre-averaging means that this exponent changes to 

exp(-q211s,- s,1/2d). (25) 

The consequence for the perturbation expansion is that the sources in (23) have to be 
put to zero and then the diffusion coefficient is obtained as 

where Tkn in (26) is given by ( 4 )  with the exponent changed to (25). The subscript p 
on D in (26) denotes pre-averaging. Using the Laplace transform in (26) we get 

1 
D,= Do/L+-Iim (T:n"9[,",z)z) dL r-o 

The Laplace transform of the effective propagator, which is defined by (13), satisfies 
the following equation: 

(27) :,:( z ,  = 6 n k 6 w y D ,  k I (  - Di k nl, ( ) A  A 1 9E.y ( z )  

where D ( k ) ( ~ )  = l / ( z +  Dohik)) .  The solution of (27) is 

9 O , O (  z )  = z - I  ( Z )  = -( D-'(  z)I + A T )  i; A ,  1 )  T,~z - - '  (28) 

where the tensor indices in (28) are dropped. 
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Using (28)  one gets for D ,  

D ,  = L-  ' (  H(,(, - ( H ( ' 2 H  ) - I  1 H )<lo) . 
The matrix HA,, is defined as follows: 

= D O ( S A n  + h f k n )  

where h = ( 5 " / ~ ) ( d - l ) ( d / 2 x I ) "  ' / d 2 ( d - 2 )  and 

l + r / Z  hn = J1: dsi joL dsz Q ~ ~ , l s i  -szI- 

It can be shown that (29) coincides with the Zimm formula 

QT2n. 

46 1 

(29) 

D,= L - ' / H i d .  (30) 

Thus we have shown that by using the pre-averaging approximation our perturbation 
expansion for D reduces to the Zimm expression of the diffusion coefficient, which 
was obtained by the exact solution of the Kirkwood diffusion equation (Zimm 1956). 

Now we compute D,, which is given by (30), in d dimensions. First we introduce 
the function I ( s )  as follows: 

H i ! ,  = 6,' ds l  ds2 

The requirement that H , :  is the inverse of H leads to the following equation for 1 :  

It is convenient to introduce the function 

cp(sl)= dsz I ( S : - S ~ ) .  li 
Then, from (31) we obtain 

q(x) + h i,' dylx -$I 'cp(y) = 1. 

The last equation can be rewritten in the symmetrical form as follows: 

dult - u J - ' + ~  '$(U) = 1. (33) 5,  $ ( t ) + h L '  32-F ' 
In the asymptotic region L-. zc (33) gives 

dult-ul- '" 2 + ( ~ )  = ( 2 / L ) '  ' / h .  (34) 5', 
The last equation can be solved by means of the method of Lata (Cochran 1972, see 
also Fixman 1981). The solution is 

$(XI = h - ' ( 2 / ~ ) '  2 r - ' ( F , ' 4 ) r - ' ( d / 4 ) ( ~  - x 2 ) - c  ( 3 5 )  
where T(x)  is the gamma function. Using G(x) we can compute H i d :  

H-1 00 = I  2 J"' d t G ( r )  
- I  
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and in accordance with (30) the diffusion coefficient D,. The result is 

D,=(kT /L ,N)[ (d  - 1 ) / d ] ( 2 / ~ ) 2 - ~ ' ~ r ( l + ~ / 4 ) r ( ( 6 - ~ ) / 4 ) / ( r ( ~ ) ( l  - ~ / 2 ) ) [ 0 L " ~  

where to = ( d / 2 ~ l ) ~  ' L o /  v d  is introduced. In  three dimensions (36) yields 
(36) 

Equation (37) was first obtained by Auer and  Gardner (1955) by solving the integral 
equation (34), using the Gegenbauer polynoms. Recently (37) was rederived by Fixman 
(1981) using the Lata method of solving the integral equation (34). Expanding (36) 
in the vicinity of four dimensions one gets 

To first order in E the expression of the diffusion coefficient obtained by the summation 
of the pre-averaged perturbation expansion (36) coincides with the Kirkwood formula 
for D (see (40)). 

4. Perturbative calculation of the diffusion coefficient 

The exact formula for the diffusion coefficient in theta solvents is given by (23). This 
formula gives the perturbation expansion of D in powers of the fluctuating HI .  The 
diffusion coefficient to second order in the H I  is given by (24). The contributions of 
different orders to D can be represented as follows: 

D =  kT /LoN+ D,+ D2+.  . . . 
D ,  is the first-order contribution to D which is associated with the first diagram in (24) 

Computing the integrals in (39) gives 

NloDil kT = [ ( d  - 1 ) /  d l [ l /  ( 1 - ~'//4)1(2/ E wo (40) 
where wo = [OLF" is the dimensionless expansion parameter of the hydrodynamic 
interaction. Equation (40) can be represented as follows: 

where k ( E )  is given by 

k (  E )  = (-  1 + 3 E - 3 ~ ~ / 4 ) [  8( 1 - ~ / 4 ) (  1 - ~ ~ / 4 ) ] - ' .  

( kT /  Lo N )  5:13/ 2dTd 

(40') 
The first two-loop diagram in (24) is associated with the following expression: 

where I ,  is given by 
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where 

(42) 

is obtained from the generating functional of the Rouse model with sources fixed in 
accordance with (17 ) .  The function t 1 2 ( r )  in (42) is given by 

1 ,  

~ ' ( 7 )  =exp(-q~ls,-s, /-q;ls ,-s, /-q,q,t ,z(r))  

x exp[ -4:  - q: - q l  q2t I2(  T ) /  (Is? - sl  I Is4 - sll)' 'I. 
It is important to ascertain if (45) possesses the l / e  singularities, which are substantial 
for the renormalisation group analysis of the perturbation series of the diffusion 
coefficient. To check if Z3 has the I / &  poles we proceed as follows. For T > O  the 
function f , 2 (7 j  defined by (43) transforms as the product of s2-sl and  s 4 - s 3  in the 
limit that these differences are small. When 7 = 0, then in dependence on the order 
of s,, . . . , s,, t , , (O)  is zero or transforms as the first power of one of the differences 
s, - s,. This is the consequence of the non-uniform convergence of the sum in (43) for 
7 2 0 .  When T > O ,  the function f in (45) transforms as ( I s , - ~ , / ~ s ~ - s ~ / ) ~ ' ~  for small 
s2 - s1 and s, - s3. 

In order to show that the contribution to the integral in (45) from the small 
differences s 2 - s ,  and s4 -s3  does not cause the 1 / ~  singularities, we omit f in (45). 
Then we can perform the integration over T. Afterwards we consider the sum over the 
modes in (45), which we denote by z (  s I  , . , , , s,). In  the limit s2 - s, + 0 and s,- s3 + 0,  
z ( .  . .)/[(s2-sl)(s,-s3)] is proportional to 

f n c o s ( m s , / L )  [ m / ( m 2 +  n ' ) ]  cos(mns,/L).  
n = I  m = l  

Because the integral sum behaves as n-' for large n, the above expression is finite 
when sI # 0 and s, # 0. It can be shown that the integrals over s1 and s3 converge at 
small s, and s 3 .  Therefore, in the integral over s,, . . . , s, the differences s2 - s, and 
s4-s3 have the power - + + & / 2 .  Thus, the s integration in (45) is finite in four 
dimensions, and consequently (45) is free of 1/e poles in d dimensions. 

The contribution to D of the second two-loop diagram in (24) is 

- ( l / d L ' ) ( 2 d / ~ ) d - ' ( 2 . ) ~ , ~ '  J ddq, ddq2 loL ds ,  JoL ds2 loL ds, loL ds, 1: dT(kT/v I2  

x TF' (41 Q,?nAi n 1 D, n ) (  7 )  T F u  (42 )  Q c j n z " (  7). (46) 
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X X 

x c Q&c4"Q")(7) c D c m ) ( 7 ) ( Q s , m  - Qc2"Qclm - QW) 

X g ( t i  ?( 7) /  ( Is2 - si I Is4 - $31) ' ''1. 
n = 1  m = l  

(49) 

The function g in (49) is defined by 

g = d qi ddqz[(d -2)qiq2+ (q ,q~)~/q?qSl /qfq i  

x exP[-d - 4: - qlq2f12(7)/(IS2 - SI/  Ih- s3l)"'I. 

I d  I 
For the same reason as for the integral l3 we conclude that I 2  does not contain the 
l / e  poles. The complete two-loop contribution to the diffusion coefficient is given by 

(50)  

We note that that I , ,  I2 and I 3  given by (48), (49) and (45), respectively, are derived 
without using the pre-averaging approximation. We have checked that the Kirkwood- 
Riseman formalism gives another expression for D z .  

The term q 1 q 2 t I 2 ( 0 )  in the exponent of (48) and the terms q , q 2 t l z ( 7 )  in the exponents 
of the expressions defining g and f result from the modification of the sources. As 
was pointed out at the beginning of D 3, the sources j , ( t )  must not be modified by 
using the pre-averaging approximation. As a result, by using the pre-averaging approxi- 
mation, the terms q , q 2 t I 7 ( O )  and q l q 2 t l , ( 7 )  do not appear. Then, in this case I 2  and 
1, become zero and I ,  can be computed exactly. The result is 

0 2  = -( kT/  60 N )  6;  L-  ' 7 ~ - ~  ( 1J4d + ( 1 2  - 13)/2d). 

~ - ~ l y = L ~ + ' ( 3 2 / ~ ' ) ( d  - l) ' / [d(d-2) ']  

x [r2(i - 42)/r(2+ & ) +  i / ( i  + & )  - 2 / ( i  + &/2)'] ( 5 1 )  
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where the superscript p denotes pre-averaging. We note that I ?  has a finite limit in 
four dimensions, i.e. it does not contain 1 / e  poles. To second order in wo the diffusion 
coefficient with pre-averaged hydrodynamic interaction is given by 

(52) 

We computed I, and I z  - I3  numerically in three dimensions without using the pre- 
averaging approximation. The result for the diffusion coefficient in three dimensions 
up to second order in powers of the fluctuating H I  is 

(53) 

D,= ( k T / i , N ) (  1 ++~,-0.0135 w:+.  . .) ( d  = 3). 

D = ( kT/ 50 N )  ( 1 + 9 w0 - 0.14 w + . . . ). 
Comparing (52) with (53) we see that the fluctuating H I  drastically changes the two-order 
contribution to D. 

Next, we start computing the 1/ E poles of I ,  . It  is convenient to use the representa- 
tion of I ,  by means of diagrams 

J ,  J 2  J! J,  J ,  J, 

For example, j, is associated with the following expression: 

x exp[-(s'I - - ( s2  - s , ) (q ,  + q2I2 - (SI  - s,)q$l (55) 

and analogously for other diagrams. To select the l / e  poles o f j ,  we proceed as follows. 
First we carry out the Laplace transform of j,: 

j l ( m ) =  dLexp(-mL)j , .  1' 
For example, j 4 ( m )  is given by 

The 1/ E pole of j4( m), which we are searching for, is connected with the ultraviolet 
logarithmic divergence of the integral over 91 in four dimensions. At large q ,  the 
integral over q ,  behaves like I d q , / q , ,  i.e. its ultraviolet behaviour does not depend 
on q2 and m. If we put both q2 and m to zero in the propagator l / [ (q l  +q,)'+ m] the 
integral would diverge at  the lower limit. In order to compute the 1 / e  pole of the 
integral it is convenient to put m equal to zero in the propagator. This method of 
computing 1/ E poles is a special case of the general method proposed by Vladimirov 
(1980) with which the singularities of the four-loop diagrams in the field theory were 
calculated. The integral over q1 in (56) can be computed by means of the formulae 
(A2) and (A3) of the appendix. The integral over q2 is computed by means of (A l ) .  
In the vicinity of four dimensions j,( m )  is obtained as 

18/4e+ . . . .  (57) 

(58) 

j , (m)  2 T'm-3-r 

Carrying out the inverse Laplace transform of (57) we obtain 

j 4 *  T ~ ( ~ / ~ E ) L ' + '  + .  . . . 
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In an  analogous way one can check that j ,  does not contain the singularity at E = 0, 
whereas for j, one gets 

In  order to compute j, + j, + j, we transform it as follows: 

j ,  + j, + j, = 2j, + j 2  + j, - j, . 
The computing of j ,  is similar to that of j,. Keeping only the singular terms we get 

j ,  = 7 r d L 1 + ( 2 - G )  9 15 +O(EO).  

With the same precision as above from (59) and (60) it follows that 

j ,  = ij, - j ,  . (61 1 
After an  elementary transformation we get for j,( m )  + j,( m )  - j ,  ( m ) :  

To compute the 1 / ~  pole all masses in (62) are put to zero, with the exception of the 
mass in the propagator l/(q:+ m )  and in the prefactor. Then, the computation of the 
integrals in (62) can be carried out by means of the formulae (A3), (A5) and ( A l ) .  
The result is 

(63) 
d l - e g  

j *  + j 3  - j ,  = 7r L + O( E O ) .  
4E 

Taking into account (54), (61) and (63) we get 

d I + F ~  I ,  = 7r L +O(EO). 
2& 

The contribution to the diffusion coefficient is obtained as 

21 
3 2 ~  

Dz = - ( k T / [ , N ) w ; - + O ( & O ) .  

We also calculated Dz using the Kirkwood-Riseman formalism. Although our per- 
turbation expansion gives an  expression for D’, which differs from that of the Kirk- 
wood-Riseman formalism, the 1 / ~  pole of D, is the same and  is given by (64). D2 
was also independently computed by Wang e? a1 (1986) using the Kirkwood-Riseman 
formalism. Their result coincides with (64). 

While we prepared the revised version of this paper the article by Wang and Freed 
(1986) was published. These authors studied the translational diffusion coefficient of 
a polymer chain in theta solvents starting with the formula for D which was derived 
by Fixman (1981) by use of the linear response theory. In our notation this formula 
for D is (continuous chain, theta solvents) 
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The second term in (65) contains the perturbation expansion in powers of the H I  in a 
closed form. We checked that (65) is equivalent to ( 2 3 ) ,  which was obtained starting 
from the Einstein formula for D. Contrary to our result (64), Wang and Freed found 
that Dz ( D " '  in their notations) does not contain the 1/ E pole. They did not explicitly 
compute D"' but checked that the quantity ( B ,  / c L p c n l )  (see Wang and  Freed 1986) is 
regular in four dimensions ( E  = O ) .  Because D"' is quadratical in ( B v l $ p , n l )  the 
regularity of this quantity only means that D"' (in agreement with our result (64)) 
does not contain a 1 / ~ '  pole. But the regularity of (Bv~i,bp,n,)  does not eliminate the 
possibility of the existence of the 1 / ~  pole of D'" .  The latter can appear by the 
'interference' of both terms (BYIt,bP,,,) in D"' which is caused by the summation on n. 

5. Renormalised perturbation calculation 

In the vicinity of four dimensions the diffusion coefficient is obtained as 

21 
328 

W O  + k (  E )  W O  - - w: + O( w:)  

The goal of the regularisation is to remove the 1 / ~  singularities from the perturbation 
series by the redefinition of the parameter of the theory. Following Oono and Kohmoto 
(1983) we assume that 1 / ~  singularities renormalise the friction constant lo. To first 
order of &, equation (66) gives 

where 6 = ( d / 2 d ) " " 5 / 7 7 d .  The regular part of the first-order contribution to D does 
not depend on &, and on  that account it will not be renormalised. Then, the two-loop 
singularity in (66) renormalises lo in the prefactor 

Equation (67) diverges if E tends to zero. To make it finite at E = 0 we modify (67) 
as follows: 

€ = to[ 1 -$&(L"2 - +$&L' - +.  . .]. 
A can be interpreted as a cutoff which cuts the integrals over 'momenta' at the upper 
limit. To introduce the renormalisation group we carry out the regularisation step by 
step: 

I -$ .Il + . . . + .I,," = L-I 2 ,  

The renormalisation of 6 at the step -2, + .I2 is given by 

5 2  = ( I [  1 - $$,( 'I;F - .I , - F ) /  E + &q( 'I;zf - .I;?F)/ E ] .  (68) 

Differentiating (68) with respect to .I2 and putting A? = 'Il = A' = ,I/r we obtain, after 
the introduction of the dimensionless interaction constant w = 

t a w / a t =  E W - $ W ' + ~ W ' = ~ ( W ) .  (69) 
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For small e the Gell-Mann-Low function p ( w ) ,  in addition to the root at w " 0 ,  has 
a root at 

w*=:E(l+&E). (70) 

This result coincides with that obtained by Wang er al (1986) after an appropriate 
redefinition of the interaction constant. For large L the interaction constant w tends 
to its fixed point w * ,  the effective friction coefficient 6 scales as W * L - ' ' ~ .  The renor- 
malised perturbation expansion of the diffusion coefficient is obtained as 

D = ( k T /  77N"d/2,rrl)d'2d-'L''2( 1 + k(  E )  w * ) /  w* (71) 

where k (E)  is given by (40'). The friction coefficient of the polymer chainf is obtained 
from (71) by using the Einstein relationf= k T /  D. The renormalisation group predicts 
thatf is independent on the monomer friction coefficient lo. Because w* is proportional 
to E, the expansion parameter of the renormalised perturbation expansion of the friction 
coefficient becomes small in the vicinity of four dimensions. The common use of the 
renormalised perturbation expansion consists in expanding f or D in powers of E ( E  

expansion). The transition to three dimensions is carried out by putting E = 1 in the 
E expansion. With the aid of (71), we get for the friction coefficient to order E' 

(72) f = vNL-"*( 2 d /  d ) d ' 2 d $ e  ( 1  + : e ) .  

In three dimensions the hydrodynamic radius of the polymer chain is defined by 

Next we consider the dimensionless ratio p = R,/RH of the gyration radius RG = 
( L1/6)"2 to the hydrodynamic radius. Using (72) in three dimensions we obtain for l / p  

l / p  =&r"'e( 1 + $ e ) .  (73) 

However, according to Marqusee and Deutch (1981) the hydrodynamic radius in d 
dimensions is defined by 

(74) ~ d - 2  - -kT/6rrvD. 

On that account (73)  is defined in three dimensions only. To define p in d dimensions 
we have to use (74) with the consequence that the E expansion of l / p  will be 
non-analytic in E .  To avoid this shortcoming we proceed as follows. In d dimensions, 
instead of p we introduce the ratio pd = ( R G / R H ) d - 2 ,  which coincides with p in three 
dimensions. The E expansion of l/pd is obtained as 

l/pd =6-f'2,rr-'d(2,rr/d)d'2f&( 1 + ; E ) .  (75) 

We see that in three dimensions (75) coincides with (73). In three dimensions (75) 
gives p = 0.76. This value is considerably smaller than the experimental value pe = 1.28 
reported by Schmidt and Burchard (1981). If, instead of (75) we use the E expansion 
of p d ,  we will obtain the worse value p = 0.42. It is noted that the value of p to order 
E ( p  = 9/47r'"~) gives the best agreement with experiment. Apparently, the summation 
of the E series, which has been successful in the physics of the critical phenomena 
and in the equilibrium excluded-volume problem, has to be performed to make a more 
accurate prediction of the effect of the fluctuating H I  on the diffusion coefficient. The 
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next terms in the E expansion of l / p d ,  which are necessary for performing the 
summation of the E series, can be computed using the perturbation expansion (23). 

6. Discussion 

In the present paper we have extended the path integral formulation of polymer 
dynamics, which was earlier developed by one of the authors, to derive the perturbation 
expansion of the translational diffusion coefficient of a polymer chain in dilute solutions 
in powers of the hydrodynamic interaction. Our method of deriving the perturbation 
expansion is analogous to that used in quantum field theory. The diagram representa- 
tion of the perturbation expansion, which has been obtained in the present paper, is 
of great importance for the analysis of the general properties of perturbation series, 
such as renormalisability and for performing higher-order calculations of the diffusion 
coefficient. 

To first order of the hydrodynamic interaction, our perturbation expansion coincides 
with that of Oono and Kohmoto (1983) which was obtained by the iterative solution 
of the Kirkwood-Riseman scheme. Jagannathan et a1 (1985) also showed that the 
correct Green-Kubo formalism and the Kirkwood-Riseman theory to first order of 
the H I  both give the same result for D. To second order of the H I ,  the field theoretic 
perturbation expansion deviates from that of Oono and Kohmoto. Nevertheless, the 
1 / ~  poles of the two-order correction to the diffusion coefficient coincide in both 
approaches. Consequently, the friction coefficient of the polymer chain to E' also 
coincides in both theories. This result is at variance with the result obtained by Wang 
and Freed (1986). In our opinion their arguments d o  not prove the absence of the 
1 / ~  pole in the two-order contribution of the hydrodynamic interaction to the diffusion 
coefficient. 

The perturbation expansion of D derived in the present paper has been summed 
within the pre-averaging approximation to give the Zimm formula for D. Here, we 
have computed the diffusion coefficient given by the Zimm formula in d dimensions. 
To first order in E the whole perturbation expansion (Zimm formula) coincides with 
its first-order term, giving the Kirkwood formula for D. In three dimensions the 
deviation between the Zimm formula and the Kirkwood formula amounts to 2 % .  

The present work elucidates the question of the quality of the pre-averaging 
approximation. The consequence of pre-averaging is that the perturbation expansion 
of D does not contain I/& singularities, with the exception of the first-order term. The 
1 / ~  pole of the two-loop contribution to D, which does not appear within the pre- 
averaging approximation, indicates the importance of the fluctuations of the hydro- 
dynamic interaction. The effect of the fluctuating H I  to order e 2  is found to be rather 
strong. Despite this, it is possible to ascribe the experimental value pe = 1.28 of the 
ratio of the gyration radius to the hydrodynamic radius to the fluctuations of the H I .  
The renormalised calculations of l / p  to the next orders in E with the subsequent 
resummation of the E series are necessary to obtain a more accurate prediction of the 
effect of the fluctuating H I  on the translational diffusion coefficient. The perturbation 
expansion of D derived in the present work is the basis for performing the high-order 
calculations. We note that the recent MC simulations by Freire et a1 (1986) attribute 
the difference between the Kirkwood result p = 1.504 and the experiment pe=  1.28 to 
the fluctuating H I .  Wang et a1 (1986) discuss other possible reasons to explain this 
deviation. 
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Appendix 

To compute the singularities of the two-loop contribution to D the following formulae 
are used (Vladimirov 1980): 

x d ” r ( a  + b - 2 +  ~ / 2 ) r ( 2 - a  - ~ / 2 ) r ( 2 -  b -  ~ / 2 )  
(A21 

(A3) 

- 
r ( ~ ) r ( b ) r ( 4 -  U - b - E )  

( k Z ) a + h - 2 + ~ / 2  
d dP I ( P2)“,(k - P ) T  - 

x d / ’ k + T ( a  + b + 2 + ~ / 2 ) r ( 3  - U  - ~ / 2 ) r ( 2 -  b - ~ / 2 )  - I (p2)a;?-@p)21b - ( k 2 ) a + b - 2 + e / 2  T ( a ) T ( b ) T ( S - a - b - & )  

x d ’ 2 r ( a + b - 3 + & / 2 ) I ‘ ( 3 - a - & / 2 ) r ( 2 -  b-E /2 )  
( p 2 ~ ~ ~ ~ ~ ) 2 ] b  = (k2)a+b-2+F/2 r ( ~ ) r ( b ) r ( 6 - ~ - b - ~ )  

x [ ( U  + 6 - 3 +  ~ / 2 ) ( 3  - U  - & / 2 ) k W k ” + 4 ( 2 -  b - &/2)6’””k2] (A41 

ddppppupA - x d ‘ 2 r ( ~ + b - 3 + E / 2 ) r ( 4 - ~ - E / 2 ) r ( 2 - 6 - E / 2 )  I (P2)“[ (k-P)21b-  ( k 2 ) a + b - 2 + E / 2  r ( a ) r ( b ) r ( 7 - a - b - & )  

x [ ( U  + b - 3  + ~ / 2 ) ( 4 -  U - & / 2 ) k ’ k ” k A  

+ $ ( 2 - 6 - & / 2 ) k 2 ( k + S v A  + k ” 8 A + +  k “ 6 + ’ ” ) ]  (A51 

where 6+’ is the Kronecker symbol in d dimensions (6+@ = d ) .  The above formulae 
are taken from Vladimirov (1980) and are reduced here to a form convenient for our 
calculations. 
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